Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
31 |
Tags
- analizer
- elbow method
- pandas
- Python
- sklearn
- data
- wcss
- insert()
- DataAccess
- Dictionary
- numpy
- IN
- 분류 결과표
- Machine Learning
- function
- 최댓값
- hierarchical_clustering
- matplotlib
- 덴드로그램
- list
- 반복문
- DataFrame
- len()
- count()
- string
- append()
- 최솟값
- del
- nan
- dendrogram
Archives
- Today
- Total
목록wcss (1)
개발공부

K-Means 알고리즘 데이터를 K개의 군집으로 묶는 알고리즘이다. 각 군집의 평균(mean)을 확용해 K개의 군집으로 묶는다는 의미다. 여기서 평균이란 각 클러스터의 중심과 데이터들의 평균 거리를 의미한다. WCSS (Within Cluster Sum of Squares) 클러스터의 각 구성원과 해당 중심 사이의 거리 제곱의 합으로 정의된다. Elbow Method KMeans에 관한 군집수를 알 수 있다. 예제 sklearn라이브러리는 KMeans를 할 수 있는 함수를 제공한다. from sklearn.cluster import KMeans 데이터 X가 있다고 할 때 적절한 K 값을 찾기 위해 WCSS 값을 확인해야 한다. 따라서 for 문을 통해 k를 2부터 10까지 의 값을 넣어 학습해보고 그때의..
Python/Machine Learning
2022. 5. 10. 17:42